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Introduction

Current

- Four rovers on Mars

- Looking for the evidence of life

- Frequent stops for scientific interests

- Day-to-day operations

- Planning tactical activities for 1-3 sols

(Martian day) in a single ground-in-

the-loop cycle

- “Restricted sols” due to Earth-Mars 

time gap

- Limited use of AutoNav

(autonomous navigation)

Future (2020 and beyond)

- More drive-oriented missions

- e.g., Collect sample tubes and return 

to the base before the launch chance

- Travel far longer distance per sol

- Higher dedication to AutoNav

- Drive beyond the line of sights

- Drive on restricted sols

- Increased onboard resources

- Vision-dedicated processors (Mars 

2020) and multi-core general-purpose 

processors (future missions)

MSL Curiosity

Mars 2020
 

MSR Lander Mission 16 

 

Figure 3-7. Fetch Rover Concept in Relation to MER 

Table 3-11. Fetch Rover Mass and Power Preliminary Estimates 
 Mass Average Power 

 
CBE  
(kg) % Cont. 

MEV 
(kg) 

CBE 
(W) % Cont. 

MEV  
(W) 

Structures & mechanisms 67.2 30% 87.3 8 43% 11.4 

Thermal control 1.0 22% 1.2 10 43% 14.3 

Propulsion (dry mass) - - - - - - 

Attitude control 2.6 7% 2.8 4 43% 5.7 

Command & data handling 8.5 12% 10.3 13 43% 18.6 

Telecommunications 3.3 10% 3.7 1 43% 1.4 

Power 21.6 30% 28.1 10 43% 14.3 

Cabling 5.8 30% 7.6 - - - 

System contingency - - 16.3 - - - 

Total Dry Mass 110.0 43% 157.3 46 43% 65.8 

Table 3-12. Proposed Fetch Rover Characteristics 
Flight System Element Parameters (as appropriate) Value/ Summary, units 

General  

Design life, months <1 year cruise, <1 year on 
surface 

Structure  

Structures material (aluminum, exotic, composite, etc.) Primarily aluminum 

Number of articulated structures 6 wheels, 4 wheel 
steering 

(1) 1-DOF arm 

Number of deployed structures 4 solar array panels 

Mars Sample Return

Fetch rover (concept)
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Computer Vision in Autonomous Navigation

• Computer vision is a major source for autonomous navigation

• Today’s vision system requires human intervention (e.g.,

manual mast pointing) to deal with challenges such as

• Texture-poor terrain: Lack of salient features

• Self-shadow: Confusion in visual feature tracking
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Perception-aware Motion Planning
What is the best actions to maximize perception performance?

Feature-rich Rock Feature-poor Sand

Drive

Mast Direction
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Key Technologies

1. Performance prediction with future measurements

• Most-likely measurement prediction with stochastic map

2. Optimal mast trajectory planning

• Spatio-temporal RRT*
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Past Measurement 𝑧0, 𝑧1, … , 𝑧𝑘

1. Performance Prediction
Quantize the performance of future measurements

Prediction ư𝑧𝑘+1

…

Visual

Odometry

𝑧𝑘 ư𝑧𝑘+1

Performance Index

Ω𝑘,𝑘+1
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1. Performance Prediction
How to predict most-likely future measurement?

Map Beliefs

Measurement

Orthogonal

Projection

Future Pose

Most-likely

Image Prediction

Belief Update
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2. Mast Trajectory Planning

Start

Goal

Mast state: (Pan, Tilt, Time)

Where to point mast? When to take image?

Body Trajectory (fixed)

Mast Trajectory 1

Mast Trajectory 2
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2. Mast Trajectory Planning
Spatio-temporal RRT*

t=0

Mast configuration

Time

Current

configuration

Random sample

Measurement 𝑧0

Prediction ư𝑧𝑡1

• Check constraints (overlap, etc.)

• Run VO on two images

• Connect to min-cost parent
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2. Mast Trajectory Planning
Spatio-temporal RRT*

t=0

Mast configuration

Time

Measurement 𝑧𝑘

Prediction ư𝑧𝑡2

Another random sample

Prediction ư𝑧𝑡1

• Check constraints (overlap, etc.)

• Run VO on two images

• Connect to min-cost parent
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2. Mast Trajectory Planning
Spatio-temporal RRT*

t=0

Mast configuration

Time

• Samples must be connected

in chronological order
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2. Mast Trajectory Planning
Spatio-temporal RRT*

t=0

Mast configuration

Time

• Rewire connections to always

keep optimal tree
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2. Mast Trajectory Planning
Spatio-temporal RRT*

t=0

Mast configuration

Time

• Continue to grow the tree until 

it converges, or reaches max 

iteration

• A path with minimum leaf cost 

is the optimal mast trajectory
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Simulation

• JPL’s DARTS/ROAMS Simulator

• Used by past flight missions 

• Two regions: feature-rich (light) and feature-poor (dark)

• Performed spatio-temporal RRT* in receding horizon manner

(5 m horizon)

3D View

CameraCamera

3D View

Fixed mast (baseline) Proposed
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Tree Evolution

Fixed timing

and direction

(baseline)

Iteration 120

Iteration 800

3D View Planning Tree Angle Profile
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Position Estimation Error
Median error for 10 different maps



jpl.nasa.gov

Receding Horizon Planning
Replan every step within 5m horizon
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